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Abstract—This paper presents an approach to pedestrian
detection that relies on a variable sized detection window. Its
main aim is to facilitate a faster detection while maintaining
a high detection rate. Speed-up is achieved by an efficient
region of interest selection method and a clever detection system
architecture. These two contributions can potentially enable real-
time pedestrian detection on monocular images.
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I. INTRODUCTION

Increasing concern for pedestrian safety in the last year has
resulted in the flourishing of pedestrian detection algorithms.
These are essential in Advanced Driving Assistance Systems
for preventing accidents involving pedestrians. Car companies
are considering incorporating such systems into their models.
For example, Volvo is planning to release cars that come with
a pedestrian and cyclist detection module which will be able
to stop the car automatically in case of an imminent collision.

Even though the problem was analyzed and tackled by
many researchers it remains largely unsolved due to several
difficulties: the various visual appearance and varied clothing
of pedestrians, different possible postures and articulations,
crowded scenes where partial occlusion prevents detection, the
large range of scales. The problem is still open to research,
with systems that meet real-time requirements being especially
difficult to develop.

II. RELATED WORK

For the purposes of this paper we will present only some
related work in detail. These are papers which are strongly
correlated with our approach and their description is needed
for comparison. For a comprehensive overview of pedestrian
detection algorithms the reader should consult the technical
literature surveys [1], [2], [3], [4].

Despite the fact that there exist a multitude of approaches
there is a tendency towards a general system architecture
that is employed by most of them. We shall make use of
this architecture to present and to emphasize different parts
of the existing methods and our suggested approach. We
mainly follow the description in [4] and state that the general
pedestrian detection system has the following modules: pre-
processing, feature extraction, region of interest selection (or
foreground segmentation), object classification, postprocessing
(verification and refinement), tracking.

To start off, we describe a traditional approach based on
the method developed by Dalal [5] and extended by several
other researchers [6], [7]. It is based on a fixed-size sliding
window detection algorithm. To enable detection of pedestrians
of different heights, the algorithm needs to resize the image
and to recalculate the features for each scale. This is necessary
because of two reasons: the detection window is of fixed size,
and the features are not scale invariant. To obtain good results
resizing must be done 4-8 times per octave and typically on
4-5 octaves. This leads to 16-40 feature recalculation steps.
We consider this the weak point in similar approaches and our
aim is to circumvent this situation.

Using two innovative ideas a recent publication by Benen-
son et al. [8] claim to achieve pedestrian detection at more
than 100 frames per second. One of the ideas is to resize the
features not images. The other is to use depth information for
a successful region of interest selection. Our approach builds
upon this work but it is different in many aspects. The most
relevant would be that our method is for monocular images
and the region of interest selection dos not require depth
information.

The following subsections describe each module from the
general architecture and provide additional details as well as
references for each component relevant to our approach.

A. Preprocessing

The module for preprocessing is responsible for operations
aiming at reducing the noise from the images and also to
improve image quality. Typical operations at this phase are
low level image processing such as: filtering with low pass
filter, histogram equalization, gamma correction, contrast en-
hancement, dynamic range etc. It is important to note that
some descriptor types are sensible to these operations and some
processing can lead to weaker detection performance.

B. Feature types

One of the most useful feature types for pedestrian detec-
tion is the Histogram of Oriented Gradients (HOG) proposed
by Dalal [5], [9]. Theses features are constructed from his-
tograms where each bin corresponds to an orientation and each
pixel contributes to the bin of the gradient angle with a value
proportional to the gradient magnitude. The histograms from
cells are grouped in blocks and normalized. This grouping
in blocks preserves spatial distribution. Finally, all responses
within the detection window are concatenated to form the full
descriptor that will be fed to the classifier. Many of the best



performing methods use this feature in conjunction with other
information. This work has been extended to enable real-time
computation of these features in [6] using integral images.

Haar wavelets were popularized by Viola and Jones [10]
for fast detection. Theses are weighted sums of rectangular
areas from within the detection window. Even though one
can predefine such features based on simple observations of
the structure of the object, it is recommended to generate
these rectangular area randomly. By generating a large number
of features one can apply an AdaBoost to select to most
discriminant features automatically. This saves the developer
the effort to find the best features and also ensures that non
of the relevant feature configurations are missed if we let the
feature to have a large dimensionality.

Integral Channel Features[11] generalize the concept of
Haar wavelets. They are defined on a general image channel.
This channel can be an intensity image; a color channel;
gradient magnitude; channel corresponding to a histogram
orientation bin etc. First order integral channel features are
simply sums of rectangular areas from these channels. The
optimization with integral images enables extremely fast cal-
culation of theses features in constant time. (Integral images
are cumulative sums along both the dimensions of the original
image intensity). Despite their simplicity, these features can be
used to achieve state-of-the-art results [2]. In [12] the authors
present a fast detection method using these features and a scale
correction method.

Other features used to complement the previous ones are
presented next. Even though simple color is not helpful for
classification relative color similarity between areas within
the bounding box is a helpful feature. Color self-similarity
[13] calculate histograms that encode second order statistics
of colors. Motion cues are very helpful for detection when
they are available. Works in this direction are: [14], [15], [16],
[17].

C. Region of interest selection

Good region of interest (RoI) selection methods can reduce
the execution time of detection methods significantly because
they eliminate unnecessary calls to the classifier. A survey by
Geronimo [4] presents several approaches under the paragraph
of Foreground segmentation. Most of the methods make use
of stereo information to detect good candidate regions [8],
[18], [19]. Monocular approaches are fewer in number and
include: biologically inspired attentional algorithms [20], [21],
vertical symmetry detection from infrared images [22], and
segmentation algorithms. Simple and efficient region of interest
selection methods using only monocular information are hard
to find or inexistent.

D. Classifier

The standard of-the-shelf classifier that is used in almost
all classification tasks is the Support Vector Machine. Linear
SVMs are fast enough to be applicable in this domain where
hundreds of thousands of classifications must be made for
each image. Radial basis function SVMs and other nonlinear
kernels have better results but are much slower. Histogram
intersection kernel SVMs have been proposed in [23] as
an alternative to linear kernel variants for better results at

the same speed. Boosted classifiers are more suitable for
large dimensional feature vectors[24]. They successfully detect
relevant features and have a good execution time. Cascading
the weak classifiers can further speed up the process. Gavrila
et al.[25] use hierarchical template matching to determine if a
shape corresponds to a pedestrian or not. Another alternative
involves neural networks.

E. Non-maximum suppression

Typically pedestrian classifiers return true even for bound-
ing boxes that partially overlap with the pedestrian. The
result is that the detector will return a clutter of detections
all centered around the true bounding box. Non-maximum
suppression algorithms are employed in this stage to determine
the best bounding box if there are overlapping ones. One of
the more time-consuming approaches involves applying the
mean-shift algorithm for this purpose. The other alternative is
to retain the bounding boxes that have a higher confidence
value in case of an overlap. We refer to this as the pairwise-
max suppression algorithm.

III. PROPOSED APPROACH

We are aiming at a detector that does not need image
resizing. As stated, this direction of research was already
investigated in works such as [8] and [10], however these
resolve the problem in a slightly different manor. Here we
will train a classifier for each scale. With this approach the
execution time can be reduced because a substantial time at
detection is spent in the feature calculation phase for each
scale.

Let us analyze the speed gain from this operation. Consider
that feature calculation for an image of size A is given by
αA. Then the cost for recalculating the features for 16 scales,
corresponding to 4 scales per octave and 4 octaves will be:

Crescale =

16∑
k=0

αAs−2k ≈ αA s2

s2 − 1
= 3.41αA (1)

In the last equation s = 20.25 is the scaling factor, which
results from the 4 scales per octave requirement. We can see
that this is 3-4 times larger than performing it only once on
the large image Cnoscale = αA, not taking into account other
necessary calculations.

To work in this framework, we must allow the detec-
tion window to have a variable height. The aspect ratio of
width/height will be fixed to 0.5, this ratio can be easily
changed to suit the prevailing mean ratio of the dataset. Using a
variable size detection window requires a feature type that can
be calculated on rectangular regions of arbitrary sizes. Integral
channel features have this property and can be calculated very
fast.

Even though some integral channel features are scale
invariant the more discriminant ones are not. This depends
on the channel type that was used. For example histogram bin
channel yields an integral feature that is not scale invariant.
This problem is solved in [12] by a scale correction and in
[8] by correcting the responses of the classifier. Here, we will



Algorithm 1 Detection method

Require: Input image.
Ensure: Pedestrians as an array of rectangles and confidence

values.
1: Calculate channels for integral channel features.
2: Apply RoI selection using Algorithm 2.
3: Set detections = ∅
4: for all RoIs do
5: Calculate the features from within the RoI
6: Classify the features using the appropriate classifier
7: if confidence > θ then
8: Add the RoI to the detections list along with the

confidence value
9: end if

10: end for
11: Apply pairwise-max on detections

consider different classifiers for each scale in order to eliminate
the problem of scale variance.

Algorithm 1 formalizes the ideas presented above and de-
scribes the steps needed at detection time to obtain pedestrian
bounding boxes. It is important to note, that feature calculation
on the integral images is performed fewer times because of
the reduced number of RoIs as opposed to calculating them
for every region (step 5). This algorithm requires an already
tuned region of interest selector and a trained classifier. Details
regarding the first are presented in the next section, while
the training procedure is described further in the experimental
section.

IV. ROI SELECTION ALGORITHM

Region of interest selection can be considered as a classifi-
cation task that must be done quickly and must have a very low
false rejection rate. In this sense, the classifier must be simple
and fast. At the same time, it must reject as many regions as
possible but must accept all possible future detection regions.

For this purpose we suggest a region of interest selection
mechanism based on gradient information. The underlying
simple idea is that object boundaries are found at positions
where the gradient value is high. We search for the top
and bottom of objects. We opt for vertical boundaries since
pedestrian width has a lot a variance and there can be a lot of
objects with vertical structure. The overview of the main steps
of the algorithm is presented in Algorithm 2.

Step 1 helps to reduce noise, especially in images with a lot
of texture (eg. dense foliage). In step 2, to obtain the top and
bottom boundaries the y component (vertical) of the gradient
is employed. We can use different methods for obtaining
edge image such as: filtering with Sobel, Prewitt or Scharr
edge filters, or applying the Canny edge detection algorithm.
From hereafter we shall refer to the result of either of these
operations as the top image.

We proceed by searching for locations where the gradient
has a high value. For this, in step 3, we threshold to zero
all pixels under a given value t1. All non-zero locations will
be considered as the middle point of the top of a potential
bounding box. All that is left is to find the matching bottom and

Algorithm 2 RoI selection

Require: Input image.
Ensure: Regions of interest as an array of rectangles.

1: Prefilter the image with a Gaussian filter
2: Obtain the edge image using a filter for the y direction

(vertical).
Name the filtered image top.

3: Suppress small values using a fixed or dynamic t1.
4: Filter the image top with a horizontal box filter of dimen-

sion d.
Name the filtered image bottom.

5: Set RoIs = ∅
6: for all possible rectangles with top center point (x, y)

and height h do
7: if top(x, y) > t1 and bottom(x, y + h) > t2 then
8: Add the rectangle (x− h/2, y)− (x+ h/2, y+ h) to

RoIs.
9: end if

10: end for

the width is determined by the fixed aspect ratio. We observe
that the bottom of a bounding box for a pedestrian will touch
the feet, but it may touch it roughly at a single point (in the
case of standing pedestrians when viewed from side) or in
multiple points (for walking pedestrians). This suggests that it
is not enough to search for the bottom of the bounding box
under the first initial top point. We propose to sum up gradient
values along the horizontal direction and to check these sums
for possible bottom delimitators. To save time, the sums are
precalculated using a horizontal 1-dimensional box filter. This
corresponds to step 4.

The region of interest selector will then consider all pos-
sible rectangles and will decide it is a region of interest if the
gradient at the top has a value larger than a threshold t1 and
also if the sum of gradients along the horizontal at the bottom
is above a second threshold t2 (steps 5-10).

The parameters for this classifier are: the type of edge de-
tection (Sobel, Scharr, Prewitt, Canny), threshold value for the
top image t1, the dimension of the box-filter d, threshold value
for the bottom image t2, the heights of the admissible bounding
boxes, the standard deviation of the Gaussian smoothing σ
applied before processing (0 for no presmoothing).

V. EXPERIMENTAL RESULTS

We have performed tests on the INRIA pedestrian dataset.
The training set contains 613 pictures with pedestrians, each
picture can contain more than one pedestrian. The annotations
are in the form of bounding boxes for each pedestrian. The
negative set numbers 1218 images that do not contain pedes-
trians. It is one of the most widely used datasets for pedestrian
detection evaluation.

All training procedures, including the parameter selection
for the RoI selector, were done exclusively on the training set.
For every scale we need to train a separate classifier. After
studying the height distribution (see Figure 1) of the ground
truth bounding boxes 4 scales were adopted: 64, 128, 256,
512 pixels. Note, this corresponds to canonical scales of: 0.5,
1, 2 and 4 for a 128x64 detection window. To obtain positive



examples we resize the training images for each pedestrian
bounding box from the ground-truth to match the fixed height
of the classifier. The initial negative samples are obtained by
sampling each of the negative example images randomly for 10
bounding boxes of the required height. Also, a random resizing
is applied before cropping the negative image to match the
resizing operations from the positive examples.

Once the initial training set is established the integral
channel features are computed and saved along with the label
of the sample. We follow the main guidelines from [12] and we
use a feature vector of dimension 5000. As channel features we
consider the channels of the Luv image, gradient magnitude
channel, and 6 channels corresponding to the gradient orienta-
tion bins. Each of the 5000 features correspond to a randomly
selected channel a and rectangular region defined on a 128x64
rectangle, having minimal area of 25. The size of the regions
are adjusted for larger and smaller bounding boxes.

After all the descriptors are ready an initial boosted clas-
sifier is trained. We used Real AdaBoost with 1000 weak
classifier consisting of 2-level decision trees from the OpenCV
implementation. Using the predictions of this first classifier
applied on the negative training set we obtain additional
negative samples from all the mistakes performed by the
classifier. We then retrain the classifier with these additional
negative samples. This process is referred to as bootstrapping
and is mainly useful in this case to reduce the number of false
positives by establishing a relevant negative example set. We
have observed that for smaller scales more negative examples
were found during bootstrapping. This may prove that different
scales pose different problems and training separate classifiers
is a good way to solve these.

To evaluate the detection system on the test set the Pascal
criteria is used to determine the correctness of our prediction.
According to this, a predicted bounding box is correct if the
ratio between the intersection and the union between the pre-
diction and a ground truth bounding box is above a threshold
set to 0.5. In order to eliminate bias to variable pedestrian
width, ground truth bounding box widths are normalized to
have width = height/2. This normalization is also adopted by
Dollar to ensure correct evaluation in the pedestrian detection
review [2].

We first analyze the effectiveness of the region of interest
selection method. For this, we use the training set and apply
the method on each training image. We then check what
percentage of the ground truth bounding boxes is present in the
returned regions. We notate this value as coverage and define
it precisely as: the number of ground truth bounding boxes that
are present in the selected regions divided by the number of
ground truth bounding boxes. The boxes need not be exactly
the same, but must overlap sufficiently. The same constant of
0.5 is used for this check. Another value of significance is the
percentage of the bounding boxes retained. This will determine
the speed-up that is achievable with the selection method. We
define the speed-up as the mean value the speed-ups for each
image. For a training image the speed-up is the ratio between
the number of all possible bounding boxes divided by the
number of accepted bounding boxes.

The minimal height is set to 24, the maximum height to
256, the dimension of the box filter is 32. For testing only the

TABLE I: RoI parameter tests on the training set

Type σ t1 t2 d speed-up coverage
Sobel 0 100 2 32 46.52 0.98

1 100 2 32 161.17 0.91
2 100 2 32 430.21 0.83

Scharr 1 120 5 32 7.83 0.99
2 120 5 32 10.05 0.98

Prewitt 0 100 2 32 148.41 0.94
1 100 2 32 952.85 0.78

Canny 0 30 2 32 15.96 1.00
1 30 2 32 23.90 1.00
2 30 2 32 32.95 1.00
2 30 5 32 144.21 0.99

RoI selection we resize the input image to have a maximum
dimension of 320 while retaining the original aspect ratio of
the image. The data in Table I shows the importance of filtering
and effect of other parameters. For Canny edge detection the
parameter t1 is the lower threshold and the higher is equal
to 3t1. More smoothed images yield smaller coverage values
because gradient magnitudes become smaller and this leads
to rejection of more rectangles. This however simultaneously
increases the gain in speed at the cost of false rejections.
The speed-up is the theoretical speed gain obtained from the
selector, the actual speed-up will differ from this value due
to additional required calculations. Our aim is to pick a RoI
selector that has a coverage very close to 1 and the highest
speed-up ratio possible.

Next, the ROC curves of three variants of the method are
presented in Figure 2. First two methods use RoI selection
method with Sobel and respectively Canny edge detection,
while the third considers all possible detection windows. The
parameters are chosen from Table I, row 1 from Sobel and
row 3 from Canny. There is only a small deterioration in
performance for using the RoI selector. In the critical zone
from 10−2 to 10−1 the selector can actually help improve
results. This demonstrates the effectiveness of the selection
module. The detection system itself is good, the majority of
the detection methods from the review [2] obtain a higher miss
rate at 10−1 false positives per image. The best performing
methods achieve around 0.25 miss rate at that mark. A better
trained classifier with more rounds of bootstrapping and more
scales would improve detection accuracy.

The speed gain from using the RoI selector can be obtained
from comparing the running time of the detection algorithm
with and without it on test images. Execution time measure-
ments are given in Table II. Speed-up is dependent on the edge
detection method used and on the input image itself. A noisy
image will result in more regions accepted and a lower speed
up. The implementation for feature extraction and classification
is by no means fully optimized and even so, good execution
times can be achieved. One of the smallest images in the test
set has the size of 370x480, detection on this image is possibly
in 200ms with RoI selection. Without the module it takes 10
times more. On larger images the speed gain can be even larger
( 33 less time needed using Sobel RoI selector ). Detection
results for these sample images are shown in Figure 3. The
time needed to perform testing on the whole test set shows an
average speed-up of a factor of 10.



TABLE II: Comparison of execution times

Test unit Sobel Canny No RoI
Test set 5 minutes 4 minutes 55 minutes

370x480 img 0.192 seconds 0.182 seconds 1.91 seconds
960x1280 img 1.032 seconds 2.895 seconds 33.02 seconds

60 132.8 205.6 278.4 351.2 424 496.8 569.6 642.4 715.2 788
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Fig. 1: Pedestrian height distribution in the INRIA training set
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Fig. 2: Results on the INRIA test set - a sample value is
emphasized near the 10−1 false positive mark
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Fig. 3: Sample detections with Canny RoI selection - The
effects of using classifiers defined on fixed scales is visible
but acceptable

VI. CONCLUSION

This work presented a method for pedestrian detection
that relies on a variable-sized sliding window approach and

efficient use of integral channel features. The aim was to
demonstrate that a simple and efficient region of interest
selection can speed-up the execution time of the pedestrian
detector while maintaining detection accuracy.

The first contribution of this paper is the original architec-
ture for pedestrian detection that employs multiple classifiers,
one for each scale, and uses a variable-sized sliding window
for detection. The second contribution consists of the region
of interest selection method that reduces the execution time
and maintains detection accuracy.

There are many reasons why the proposed detection
method is fast. Firstly, it is because integral features are
inherently fast to calculate. Secondly, no image resizing is
needed and features are only calculated once per image.
Thirdly, we use an original region of interest selection method
to reject most of the regions. Fourthly, boosted classifiers using
2-level decision trees are suitable and efficient classifiers for
integral channel features.

In the future we plan to develop a training method for the
RoI selector to automatically determine the thresholds from the
training set. A better trained classifier with more bootstrapping
rounds and more scales could help increase the detection rate.
Another improvement would be using a cascaded classifier to
lower execution for the system as a whole.

ACKNOWLEDGMENT

This research was funded by the SmartCoDrive project,
code PN II PCCA 2011 3.2-0742 from 03.07.2012 (2012-
2015).

REFERENCES

[1] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
A benchmark,” in CVPR, 2009, pp. 304–311.

[2] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art,” IEEE Trans. Pattern Anal. Mach.
Intell, vol. 34, no. 4, pp. 743–761, 2012.

[3] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection:
Survey and experiments,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 31, no. 12, pp. 2179–2195, Dec. 2009.
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